

ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

@NASAARSET

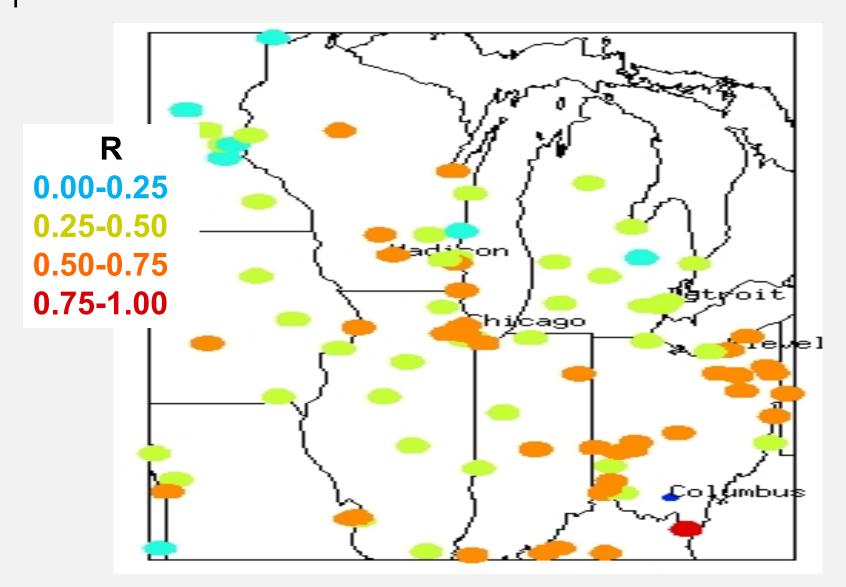
Converting AOD to PM_{2.5}: A Statistical Approach

Pawan Gupta & Ana Prados

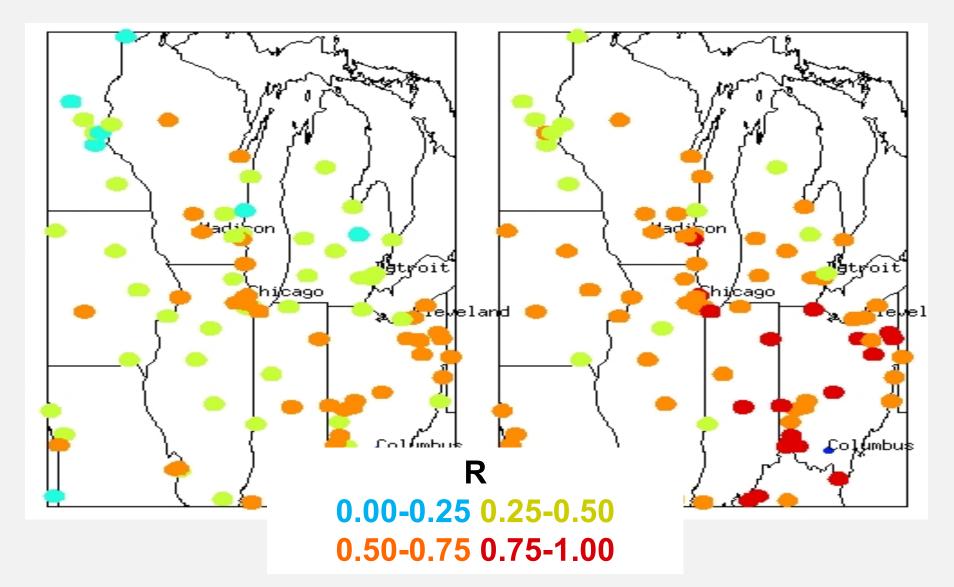
Satellite Remote Sensing of Air Quality: Data, Tools, and Applications

Tuesday, May 23, 2017 – Friday, May 26, 2017 Indian Institute of Tropical Meteorology, Pune, India

Objective


 Convert satellite derived aerosol optical depth into surface level PM_{2.5} mass concentration using a statistical approach

Required Data


- PM_{2.5} mass concentration from ground monitors
- Satellite derived aerosol optical depth
- Meteorological Fields only if working with a multi-variable method

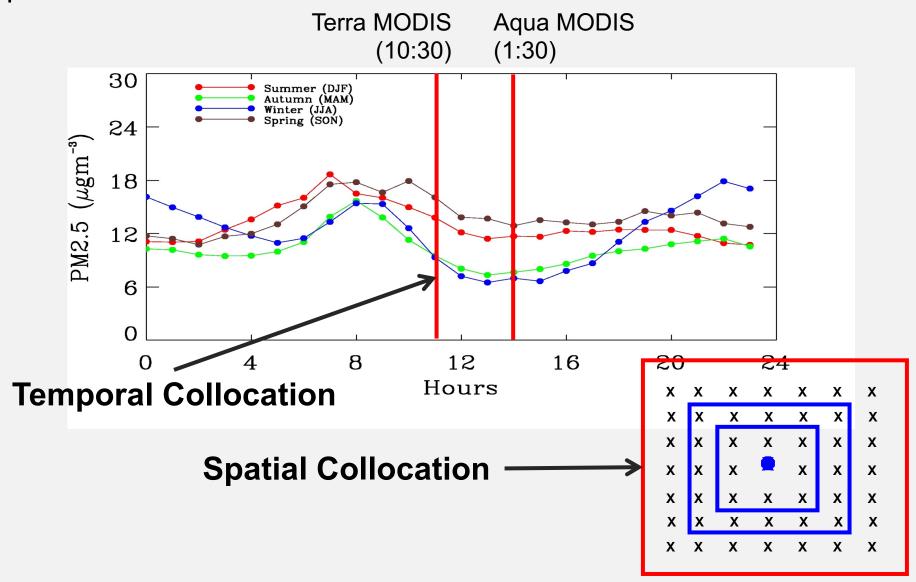
Correlation Between PM_{2.5} & AOD

Two Variable Method

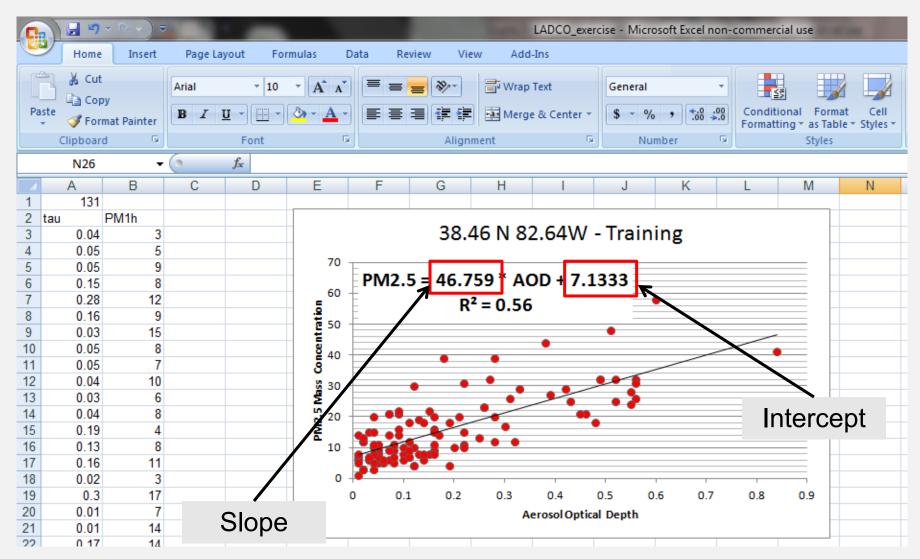
Multivariable Method

Step 1: Getting Satellite and Surface Data

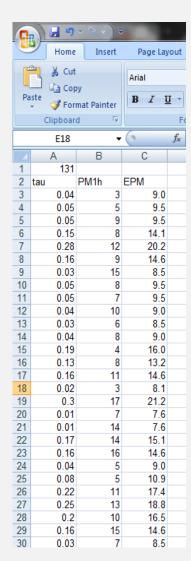
- Obtain a MODIS AOD data file from the NASA data server for your region, date, and time of interest
 - -http://ladsweb.nascom.nasa.gov/
 - -from earlier exercise
- To get PM_{2.5} for your region:
 - -For U.S. Data: http://www.epa.gov/airdata/ad_maps.html
 - –Global Air Quality Monitoring System: http://aqicn.org
 - -Global Open Data: http://openaq.org
 - Your own data source or measurements

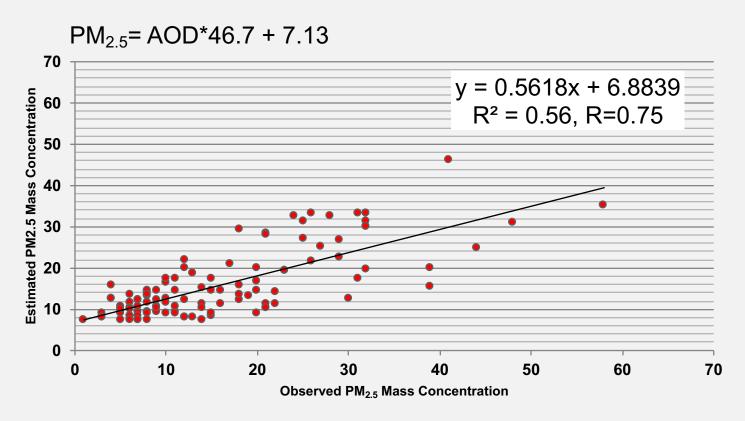

Step 2: Collocating Satellite and Surface Data

- Run IDL, Matlab, HDFLook, Python, etc. code to obtain AOD at the location of the PM_{2.5} ground monitor
 - –Python scripts:

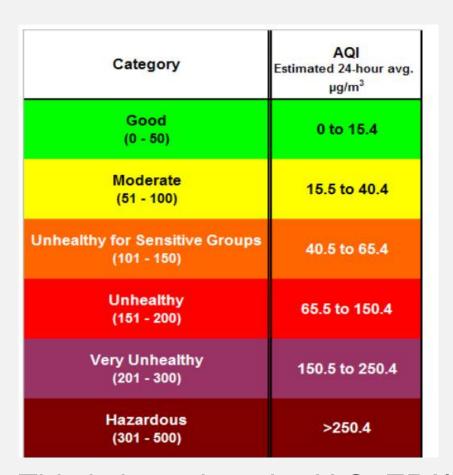

https://arset.gsfc.nasa.gov/airquality/python-scripts-aerosol-data-sets-merra-modis-and-omi

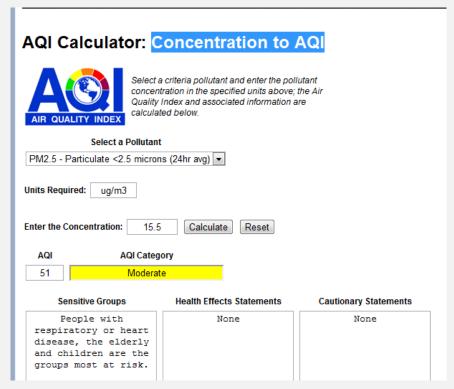
- -IDL code:
 - http://arset.gsfc.nasa.gov/sites/default/files/airquality/works hops/Santa_Cruz_2013/read_mod04_map_aqc.zip
- Spatial and Temporal Collocation Methods
 - -pick the nearest pixel or average over 3x3 or 5x5 pixels
 - -pick the closes PM2.5 measurement from ground to satellite overpass time
 - If hourly data is unavailable, then daily mean data can be used as well


Step 2: Continued



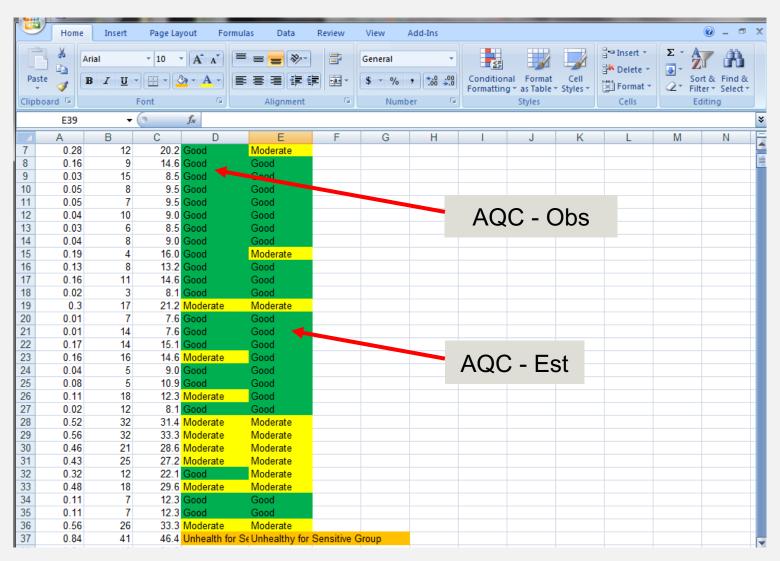
Step #3: Developing a Relationship Between AOD & PM2.5


Step 4: Estimating PM_{2.5} from Satellite AOD

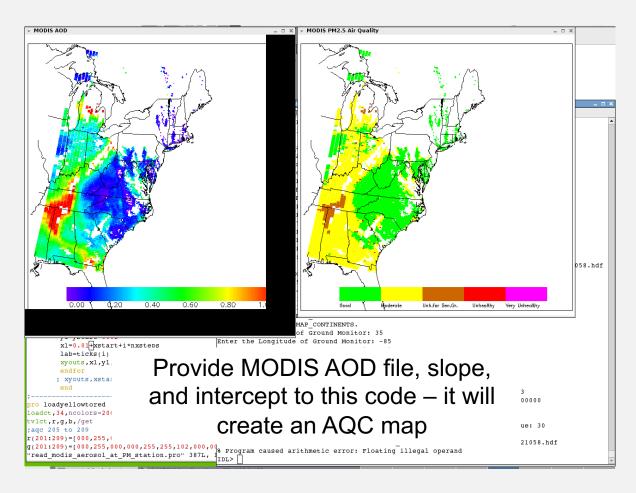


In ideal conditions, two separate datasets should be used to form the relationship and to test or validate the regression equation

Step 5: PM_{2.5} to Air Quality

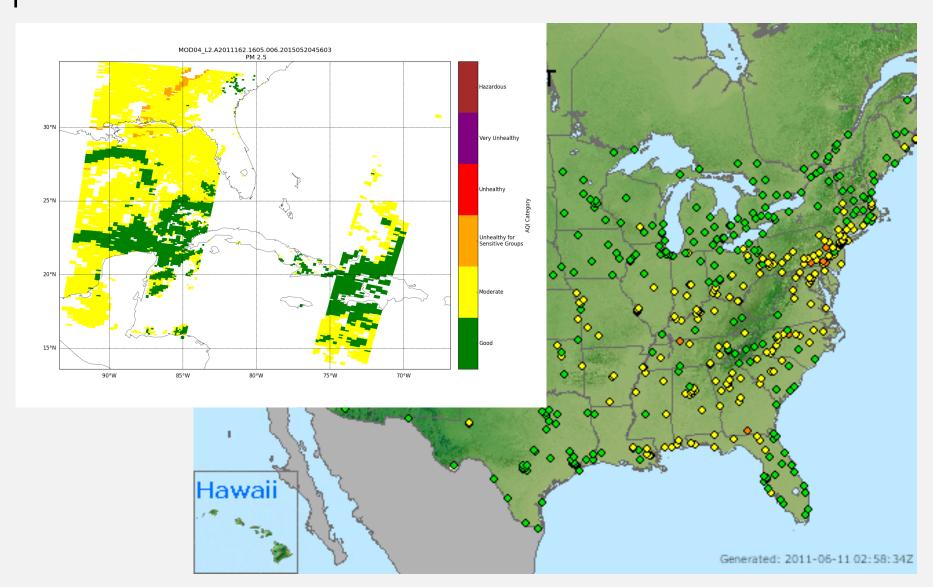


Online Tool

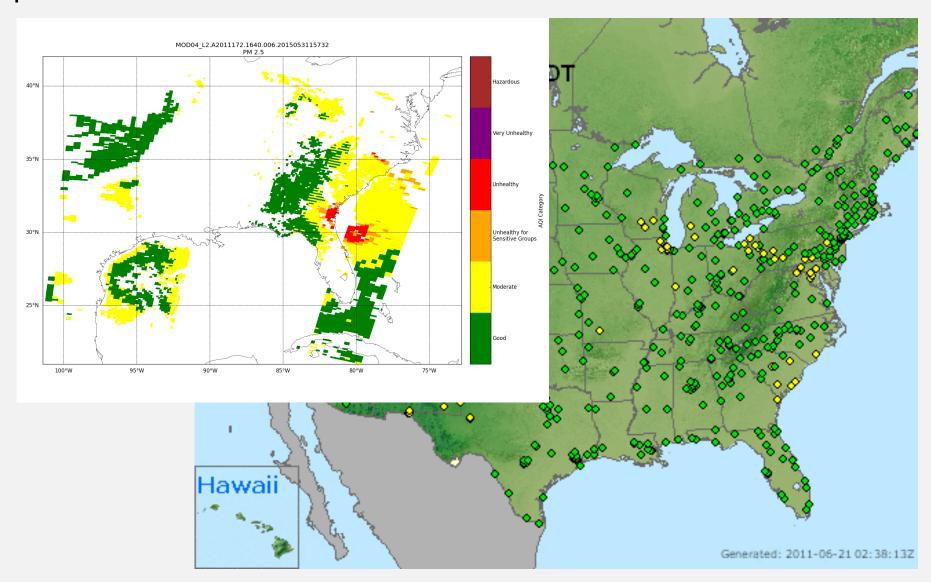


This is based on the U.S. EPA's definition of AQI, which can be different in other countries

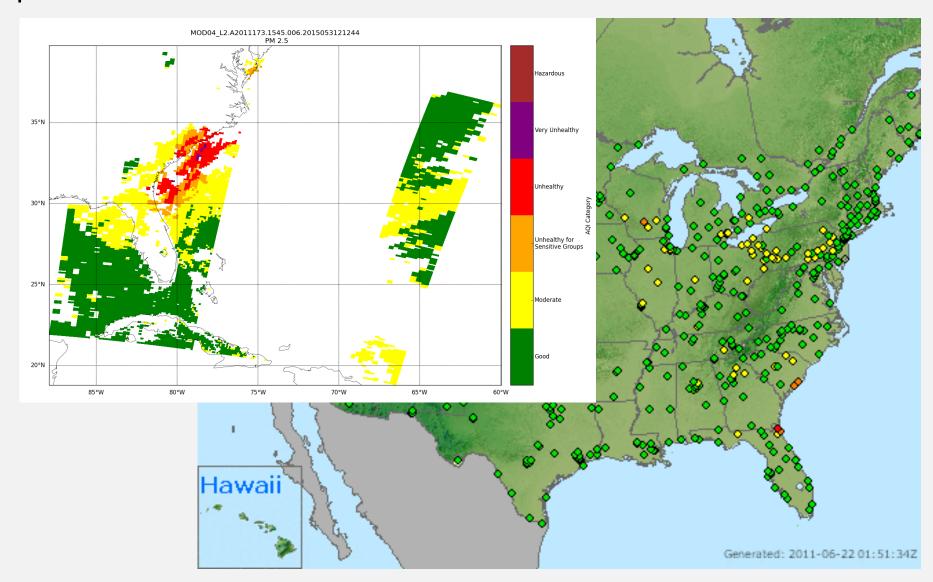
Step 5: PM_{2.5} to Air Quality



Creating an Air Quality Category Map Python/IDL Tool



http://arset.gsfc.nasa.gov/airquality/ python-scripts-aerosol-data-sets-merra-modis-and-omi

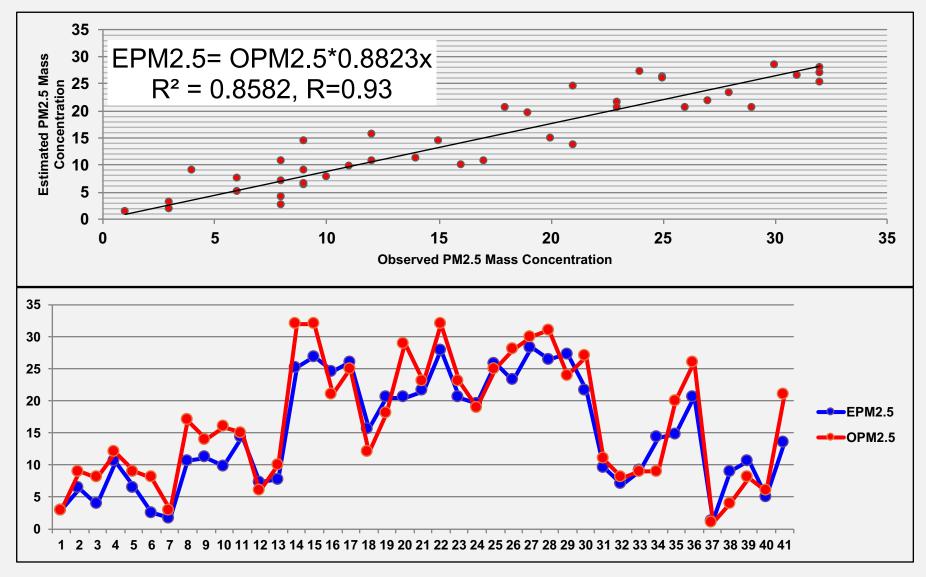

June 10, 2011

June 20, 2011

June 21, 2011

Multiple Linear Regression Method

$$PM2.5 = \beta_0 + \alpha * \tau + \sum_{n=1}^{m} (\beta_n * M_n)$$


Required AOD and meteorological fields and more data processing, more expertise but most of the time produce more accurate PM_{2.5} estimation

Multiple Linear Regression Model

AOD, PM_{2.5}, and Meteorological Data

	Clippoa	ira 🤒		FOR		_	Allon	ment		NIII	nner		Styles
	N3	•	• (f _{sc} =17.0)2*A3+1.14	*D3-0.92*E	3+0.44*F3	-0.95*G3+1	L.04*H3-0.0	4*13-0.31*.	J3-0.031*I	(3-0.0022*L3	-177.26
4	С	D	Е	F	G	Н		J	K	L	M	N	0
1	atitude = 3	8.46, Longit	tude = -82.6	4									
2	PM1h	tmp0	tmp1000	tmp700	rh0	rh1000	rh700	ws0	ws925	hpbl		EPM2.5	
3		3 277.47	277.4	266.05	71.26	71	70.32	4.14	16.22	63.33		2.995254	
4		9 287.25	285.97	270.8	28.95	29.41	39.34	2.76	1.41	623.5		6.35489	
5		8 274.13	273.1	260.93	63.01	63.56	17.28	4	8.79	675.67		3.911136	
6	12	287.43	286.53	269.72	46.23	46.52	23.82	3.64	9.04	800.67		10.58439	
7	(9 275.9	275.85	264.3	59.98	60.34	11.2	3.39	5.76	53		6.47774	
8	1	8 283.18	281.67	265.93	35.44	35.57	79.54	0.65	2.47	676.83		2.494904	Concentration
9		3 286.07	283.98	265.25	36.55	36.66	42.77	4.46	9.49	1325.83		1.748084	Ę
10	17	7 297.03	297.98	275.33	52.06	51.57	81.85	4.04	13.09	925.5		10.67131	i i
11	14	4 296.88	294.37	274.78	29.43	29.35	27.39	2.18	6.37	1633.33		11.1627	2
12	10	6 297.05	295.72	275.03	25.06	25.43	44.91	4.98	16.45	914.83		9.828424	
13	15	5 299.85	297.52	275.25	42.4	42.92	42.66	3.17	6.19	1281.5		14.36151	Stimated PM2.5 Mass
14	(6 289.07	287.65	269.45	57.64	58.14	68.48	4.43	34.55	478.83		7.372424	≥ 10
15	10	0 295.3	293.57	273.68	42.91	43.34	88.06	3.94	17.43	1226		7.74657	5
16	32	2 301.9	299.88	282.63	51.67	51.79	32.02	2.83	9.8	585.17		25.24983	_ €
17	32	2 303.42	300.45	282.27	50.19	50.36	23.46	2.64	6.74	833.5		26.84926	le d
18	2	1 299.68	297.82	279.97	80.46	80.25	68.37	2.38	6.51	75		24.58039	a i
19	2	5 304.13	301.87	283.48	64.15	64.42	31.91	3.5	6.1	541.17		26.09083	, i
20	12	295.48	295.2	276.62	64.84	63.68	18.02	4.36	6.28	849.83		15.65489	
21	18	300.6	297.15	276.12	45.32	45.23	21.52	1.03	2.05	1799.67		20.49068	
22	29	9 302.4	299.1	279.78	60.49	60.86	47.22	3.41	5.88	1457.67		20.51765	
23	23	3 303.7	300.62	282.55	60.82	60.86	12.18	2.56	6.53	1655.67		21.5245	
24	32	2 307.48	303.73	284.97	63.16	63.1	57.85	1.99	6.4	969.83		27.92127	
25	23	3 306.27	304.75	282.85	59.03	58.51	43.11	2.42	6.73	880.5		20.54857	
26	19	9 307.38	304.78	283.63	51.07	51.09	34.56	4.67	7.7	777.83		19.60247	
27	2	5 306.15	303.15	283.25	60.33	60.41	56.95	4.62	6.13	953.83		25.84764	
28	28	304.92	303.35	283.4	63.96	63.78	81.48	2.4	6.46	1561.83		23.25351	
29	30	302.98	302.9	281.58	59.39	59.84	94.25	3.08	6.66	1391.33		28.37551	
30	3′	1 301.35	300.05	282.43	60.76	60.4	33.71	2.94	7.29	89.33		26.44508	
31	24			280.67	55.96	56.51	23.92	2.29		1058.83		27.27383	
วา				204 02	EC 77	E7 0	ວວ າາ	4.04	10.04	E27 C		04 74764	

Multiple Linear Regression Method Results

!! CAUTION !!

- Regression analysis provides the first approximation of surface PM2.5 mass concentration and air quality
- Its accuracy depends on training data and varies in space and time
- Careful data quality control, testing, and validation should be performed before using this method for quantitative analysis
- Works best when the boundary layer is well mixed, there is no significant aerosol aloft, and in small particle dominated regions